Parametric curves and their tangents II

Conceptual questions

Question 1. We've seen that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}
$$

provided that the denominator is nonzero. How do we compute $\mathrm{d}^{2} y / \mathrm{d} x^{2}$ for a parametric curve?
Question 2. Let P be a point on a curve where the tangent is neither horizontal nor vertical. True or false:

- If $\mathrm{d} y / \mathrm{d} x>0$ at P, then $\mathrm{d} x / \mathrm{d} y>0$ also.
- If $\mathrm{d}^{2} y / \mathrm{d} x^{2}>0$ at P, then $\mathrm{d}^{2} x / \mathrm{d} y^{2}>0$ also.

Question 3. Given any single-variable function $f(x)$, you can view its graph as a curve in the $x y$-plane, with Cartesian equation $y=f(x)$. How can you parametrize this curve? Suppose that $\left(x_{0}, y_{0}\right)$ is a point on the graph. If you compute the slope at this point using the $\$ 10.2$ formula, do you get the same answer as you expect from Math 1A?

Computations

Problem 1. Find the equation of the tangent line to the parametric curve

$$
x=4 e^{t-3}+1 \quad y=\sin (\pi t)+t \quad-\infty<t<\infty
$$

at the point $(5,3)$.
Problem 2. You're probably sick of parametrizing circles at this point, but here's one parametrization of $x^{2}+y^{2}=1$ that might be new to you, called stereographic projection.

The line passing through the points $(0,1)$ and $(t, 0)$ intersects the unit circle at one point other than $(0,1)$. Find the coordinates of this point, in terms of t.

In the parameter interval $-\infty<t<\infty$, does this parametrization trace out the entire circle?

